Divergence of function and regulation of class B floral organ identity genes.

نویسندگان

  • A Samach
  • S E Kohalmi
  • P Motte
  • R Datla
  • G W Haughn
چکیده

Regulatory mechanisms controlling basic aspects of floral morphogenesis seem to be highly conserved among plant species. The class B organ identity genes, which are required to establish the identity of organs in the second (petals) and third (stamens) floral whorls, are a good example of such conservation. This work compares the function of two similar class B genes in the same genetic background. The DEFICIENS (DEF) gene from Antirrhinum, including its promoter, was transformed into Arabidopsis and compared in function and expression with the Arabidopsis class B genes APETALA3 (AP3) and PISTILLATA (PI). The DEF gene was expressed in the second, third, and fourth whorls, as was PI. Functionally, DEF could replace AP3 in making petals and stamens. The DEF gene's AP3-like function and PI-like expression caused transformation of fourth-whorl carpels to stamens. Like AP3, all aspects of DEF function in Arabidopsis required a functional PI protein. Surprisingly, DEF could not replace the AP3 protein in properly maintaining AP3 transcripts (autoregulation). Our data allow us to revise the current model for class B autoregulation and propose a hypothesis for the evolution of class B gene expression in dicotyledonous plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floral organ identity genes in the orchid Dendrobium crumenatum.

Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown....

متن کامل

Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes

The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four...

متن کامل

Regulation of Arabidopsis flower development.

Plant development is governed by intrinsic and environmental factors that regulate the identity and activity of meristems, organized tissues of pluripotent "stem" cells, that together determine plant form and architecture. However, little is known about how these factors act at the molecular leve1 to affect meristem identity and function. Genetic studies in Arabidopsis and other plant species s...

متن کامل

APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.

The development and coordination of complex tissues in eukaryotes requires precise spatial control of fate-specifying genes. Although investigations of such control have traditionally focused on mechanisms of transcriptional activation, transcriptional repression has emerged as being equally important in the establishment of gene expression territories. In the angiosperm flower, specification o...

متن کامل

Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function.

The B-class genes APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis (Arabidopsis thaliana) and their orthologs in other species have been the focus of studies to elucidate the development of petals and stamens in angiosperm flowers. Evolutionary analysis indicates that B-class genes have undergone multiple gene duplication events in angiosperms. The resultant B-class lineages are characterized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1997